N91-10614
/57

Experiences with Ada in an Embedded System

Robert J. LaBaugh
Martin Marietta Astronautics Group ;
Space Systems ! L(' {
Denver, Colorado 80201 '\] i

Introduction

This paper describes recent experiences with using Ada in a real time environment. The
application was the control system for an experimental robotic arm. The objectives of
the effort were to experiment with developing embedded applications in Ada — evaluating
the suitability of the language for the application, and determining the performance of the
system. Additional objectives were to develop a control system based on the NASA/NBS
Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada,
and to experiment with the control laws and how to incorporate them into the NASREM

architecture.

Background

The arm to be controlled has five degrees of freedom — one degree in each of the shoulder
and elbow joints, and a wrist with roll, pitch, and yaw. An Intel 80386 single board computer
in a Multibus II system was used for the controller. The board contained an 80387 math
coprocessor, two megabytes of RAM, and a single RS-232 serial port. The clock frequency
for the system was 16 MHz. Rather than just use the 80386 as a fast 8086, the 80386 was
operated as a 32 bit processor in the protected mode, which provides for segment sizes of

up to four gigabytes.

The Ada compiler selected was the DDC-I cross compiler for the 80386, which was hosted
on a MicroVAX. This compiler was targeted to a bare machine, so there was no operating
system to either provide services or detract from the performance of the system. The
runtime system supplied with the compiler provided all of the services needed to support

the features of the language, including initialization of the hardware, memory management,

R. LaBaugh
Martin Marietta
1 of 19

time management, the Ada tasking model, and interrupt handlers. An operator interface
for the application was implemented using the standard Ada Text_IO package. This package
uses the RS-232 port on the single board computer for the standard input and output of
Text_10.

Development Approach

The software development system is shown in Figure 1. It consisted of a Rational R1000,
a MicroVAX I, and a PC clone. The systems were connected via Ethernet, which was
used to transfer files between the systems. Initial program development was done on the
Rational. To facilitate code debug and checkout on the Rational, Ada routines to simulate
the hardware were developed. These were used to replace the low level hardware interface
routines. When the target hardware and compiler became available the source code was
moved to the MicroVAX. Target peculiar modifications were made to the code, such as the
specification of task entries as interrupt handlers and the hardware interface routines. The
code was then compiled and linked on the MicroVAX, and the resulting load module was
downloaded to the PC. The PC served as the controller for the in-circuit emulator, which

was used to load and control the execution of the code in the target system.

MicroVAX PC
Rational
ationa (80386 Compiler) ICE Controller
Ethernet
Robot . 80386
Control [@—P] 3"(;1;2:;)1‘553"0 ——» |- Circuit
Electronics Emulator

Figure 1. Development System

R. LaBaugh
Martin Marietta
2 of 19

Even though the capabilities of in-circuit emulators are improving, this was a less than
optimal environment for debugging code. Having to move from one terminal to another,
moving files from one system to another, and the limitations on file names on the PC all
hinder code development and checkout. The movement is clearly toward being able to
compile, download, and debug from a terminal on the host development system. There are
some systems which currently allow this, but the targets are connected to the host by an
RS-232 line. The relatively slow download speeds limit the size of programs which can be

effectively developed using these systems.

Ada Features Used

Ada tasks and task rendezvous were used for synchronization and communication between
tasks. Task priorities were established using the priority pragma. An interrupt handler
was coded in Ada to service the timer used to provide the control loop cycle. This was
accomplished using an address clause for a task entry — which is the technique specified
in the Ada Language Reference Manual for defining interrupt handlers. The Low_Level 10

package was used to communicate with the hardware controlling the joints on the arm.

There was one package where machine code insertions were used. This was used to provide
procedures to disable and enable interrupts. These routines were not really needed by the
initial application. They were used to assure safe initialization of the hardware, which
was already guaranteed by the sequencing of the initialization routines. However, these
routines become necessary as more Multibus II features are used. This is because some
logical operations, such as accessing a single Multibus II interconnect space register, require

accesses to multiple hardware ports.

Software Application

NASREM defines a layered, hierarchical control system with common interfaces between
layers. The lowest layer in the hierarchy operates at the highest frequency, with a decreasing
frequency of operation with each higher level. Ada tasks were used to implement the
NASREM layers, with the priority of the tasks decreasing with increasing levels in the

hierarchy. The requirement that the argument to the priority pragma be a static expression

R. LaBaugh
Martin Marietta
3of 19

prevented the use of a generic package in defining the NASREM levels. However this was a
minor inconvenience as there was very little code involved in defining the control structure

within a level.

The initial application concentrated on the two lowest levels of the NASREM architecture.
The servo level reads current joint positions and sends motor commands based on the
error between the current and desired position. This level was driven by a programmable
hardware clock which generated a periodic interrupt. The primitive level determines evenly
spaced points between desired end points and performs the kinematic transformations. The
elemental move level initially consisted of simple canned motion generators, and the task
level simply selected the motion to be performed. The robot control function and the
operator interface were both run on the same CPU, with a total of eleven Ada tasks in the

application.

The entire application was coded in Ada. No non-standard pragmas or special interface
routines to the runtime system were used. In addition, we were able to effectively write low
level code in Ada. This included interrupt handlers, hardware interface routines, Multibus
IT message passing routines, and control of a DMA processor. The hardware, and the code
generated by the compiler, provided more than adequate performance for the system. In
experimenting with the control laws the control loop cycle time was varied between 10 and
50 milliseconds. For most of that range all levels of the NASREM architecture were able
to complete in a single cycle. Since the NASREM architecture is set up for approximately
a ten to one ratio in frequency of operation between levels, this leaves plenty of room for

growth.

Current activity includes splitting the robot control function from the operator interface
function and executing them on two CPUs. The initial interface and communication be-
tween the processors is via shared memory. As an alternative, Multibus IT message passing
will also be investigated. This is being done as an exercise in distributing the application.
[tems of interest are the difficulty of implementing various communication schemes and the

relative performance.

R. LaBaugh
Martin Marietta
4 of 19

Lessons Learned

Most of the things which could be considered lessons learned are more appropriately clas-
sified as common sense. Specifically, while being able to use a host system for initial debug
and test is a useful development tool, it does not eliminate the need for low level testing
on the target system. This testing is needed to establish the correctness of the hardware-
software interface definitions, and to build confidence in both the hardware and low level
software routines. Having a set of programs to incrementally checkout the low level functions
and interface also provides the basis for trouble-shooting as problems arise. Such routines
were needed to isolate hardware failures and identify improper system initialization, which
happened if a specific sequence was not followed for powering on the electronics racks and

computers.

Another major lesson learned was that portability is not automatic with Ada. There were
two specific instances of this. The first involved differences in the tasking implementation
between the Rational and the 80386 target. Tasks of equal priority are time sliced on the
Rational, but this is not the default for the DDC-I runtime system. A task which was to
run in the background, and which checked flags in an infinite loop, was elaborated before
some of the higher priority tasks were initiated. Since the task didn’t allow for any type
of context switch, as soon as it started executing on the 80386 it kept control of the CPU,
preventing the further elaboration of the system. Inserting a delay statement inside the
loop fixed the problem. The other experience with non-portable Ada code involved a public
domain math functions library. The functions used by the application worked correctly on
the Rational. However on the 80386 system one of the functions produced erroneous results
for certain input values. It was discovered that this math package had hard coded values
for machine specific parameters. We did not try to determine if this was the cause of the
problem as an alternative math functions library was available. This does point out the

need for extensive test data, and a test mechanism, for “reusable” Ada packages.

There still seems to be a tremendous resistance to using Ada language features for embed-

ded, real-time applications. Some of this comes from “experts” who have heard Ada is not

R. LaBaugh
Martin Marietta
5 of 19

efficient enough, or just cannot support various real-time or “system” functions. This resis-
tance is probably a positive sign. It used to be said that Ada was too inefficient for almost
all applications, not just real-time applications. Unfortunately system specifics, such as a
particular compiler, target, or any operating system involvement, tend to be forgotten or
ignored. There are certainly systems which cannot come close to supporting time critical
applications, but this does not mean all systems are that way. Much more surprising is
the push by some Ada compiler vendors (and, less surprising, real-time kernel vendors) to
promote special, non-Ada runtime systems. This could be seen as an attempt to distinguish
their product, or provide a higher performance system where needed. However, it could
also be viewed as an attempt to circumvent shortcomings in their runtime system imple-
mentation — which could lead to speculations of what else might be inefficient or poorly
implemented in the system. The use of such systems greatly reduces the portability of the

code and adds another complex system which has to be maintained.

Conclusions

We were able to implement a complex real time system in Ada, and did not have to resort to
circumventing Ada language features or use a special, non-Ada run time system. This was a
result of having hardware, and an Ada compiler and runtime system, with significantly more
performance than was needed by the application. Futhermore, using the Ada tasking system
allowed the initial debug and test of the code to be performed on the host development
system, which was more accessable than the target system. This also allowed the debug
and testing to begin before the target system was available. Another advantage of using Ada
tasks and having sufficient performance margin was that it allowed the application to be
implemented primarily by junior engineers. Some guidance was provided on implementing
the interrupt handler and cyclic task execution. Otherwise they were able to use textbook
taéking solutions, such as having tasks to coordinate exclusive access to resources. All of
this indicates that as Ada compilers continue to mature the idea of leveraging of skills can

be extended to the real-time arena.

R. LaBaugh
Martin Marietta
6 of 19

THE VIEWGRAPH MATERIALS

FOR THE

R. LABAUGH PRESENTATION FOLLOW

0Aavy010d “¥3AN3IA
SIW3LSAS 30VdS
dNOYO SOILNVNOYLSY VLLIIIYVIN NILIVIN

ybnegeq ‘1 Maqoy

W3LSAS d3AA3gdIN3 NV NI vaV HLIM S3DN3IIH3dX3

Martin Marietta

R. LaBaugh
9of 19

PAGE__ % INTENTIONALLY BLANK

oo d FLMID

Y

SMV1 TO4LNOD HLIM LNIWIYIdX3T -
Vav NI 34N1I33LIHOYY WIHSYN NO d3svd WILSAS TOHLNOD d013A3Q -

FONVYINY0443d ININYIL3Q -
S3YNLV3I4 IOVNONVT ILYNIVAT -
vayv NI NOILVOINddV d3ad3gn3 4013A3a4 -

SIAILD3fE0

WYV 10904 TVLNIWINIdX3T 40 T04LNOD -
NOILVII1ddV a3aa3gn3

NOILDONAOYLNI

Martin Marietta

R. LaBaugh
10 of 19

ONI99Ng3d ANV IDV44ILNI ¥OLv¥IdO ¥O4 a3asn -
0/1 ONIMIO19-NON -
ay¥vog NddD NO LY0d ¢€Z-SY S3SN OrLX3L

JYVML40S
ANV JYVMAYVYH 40 T04LNOD 3131dW0OD SIAIANOHd WILSAS JWILNNY vaV -

W3LSAS ONI1VH3IdO ON -
ANIHOVIN 34vd Ol d3139YVL -
JA0W d312310dd 98¢£08 vaAV 1-0AA — ¥31TIdNOD vav

140d ¢€¢-SH

WVY dIN ¢

40SS3008d0I ANV NdI Y04 ¥IO01D ZHW 91
d40SS300dd0D HLVIN 18€08

YILNdINOD a¥v04d ITONIS 98€08 1ILNI — dILNAINOD LIDYVL

MVA ANV HOLId ‘1704 HLIM LSIY4M ANV ‘M0Og913 ‘43ATNOHS -
WOd3344 40 S334953d A4 HLIM WHY 1090y

ANNOJYODMOVvY

Martin Marietta

R. LaBaugh
11 of 19

HOLVINWN3I
LINQHIO-NI [

o085 9808 o | SONOULOT

'sSNaILINN

SOINOHL1O313

98€08 10804
/
13INH3IHLT
v
H3TMOHLNOD 30| (H37dWOD 98€08)
0939 09 TVNOILVY
Od XVAOHOIN

!

W31SAS ININJO13A3A

Martin Marietta

R. LaBaugh
12 of 19

Q33dS 7€7-S¥ A9 AILINIT LNG ‘SWILSAS FWOS Y04 MON FTEV VAV -

TYNINYIL
INO WOY¥4 DNI99NG3A ANV ‘ONIAYOTNMOA ‘ONITIdWOI AYVMOL ONIAOW -+

1394VL NO 9ng3d 404 LNIWNOYIANT TVWILDO NVHL S531

IW3ILSAS 1394VL NI 300D 40 NOILND3X3T TO¥LNOD ANV avO1 0L a3sn -
JOLVINWI LINDYID-NI 404 H3T04LNOD -
INO1D DOd W4l 0L GIAOW ITNAOW avOl

IWILSAS XVA NO A3LSOH 98€08 Y04 ¥3TdINOD SSOUD vav -
XVAOY¥IIW NO d3XMNIT ANV a311dIW0D SSOUD

XVAOYDIW 01 A3AVOTINMOQA 3a0I 304N0S

SINILNOY NOILYINWIS HLIM a3DV1dId JDVAYILNI FYVMAIVH 13A3T MO -
TYNOILYY NO 1531 ANV LNINJOT3IAIA TVILINI

HOVOdddV LNINdO13ATA

Martin Marietta

R. LaBaugh
13 of 19

NOILVH3dO0 TvIID0T ¥3d SISSIDIV IYVMAYVH IdILINK -
a3asn S34n.Lvad Il SngiL1INN 340N SY d3ag3an -
JYVMAYVH 40 NOILVZITVILINI 34VS 404 d3sn -
NOILVIITddV TVILINI NI d3Q33N 1ON -
S1dNYYILNI 3719VN3I ANV 319VSIA OL a3Isn -
SNOILYISNI 3A0D INIHOVIN

SIIVIYILNI FJHVMAYVH HLIM JLYIINNIWWOD OL a3sn Or13AITmo1

SHSVL Q3ZILIOIYd

AYLN3I MSVL 404 3SNVTD SS3¥AAQV -
VAV NI d330D ¥3TANVH LdNYy¥31NI

NOILVOINNWINOD ANV NOILVZINOYHINAS ¥04 SNOAZIANIY NSVL -
SMSVL vayv

a3isn s3aiunivid vav

Martin Marietta

R. LaBaugh
14 of 19

dOO1 T04LNOIJ INIAIYA LdNYYILNI ¥D010 FHVMAYVH

SUSVL vaVv IT -
NdD (319NIS) INVS NO SNOILINNL TOYLNOD LO90Y ANV IDV4YILNI ¥01v¥3dO

W30443d OL NOILOW S13313S — 13A3T MSVL

SYOLVYINID NOILOW dINNVDI ITdNIS — 13A3T IAON TVLNIWITT
SNOILVINYO4SNVYL DILVINININ

‘NOILOW HLOOWS d04 SLNIOd d30vdS ATN3IAT SININY3LIA — T3IATT JALLINIYG
NOILISOd d3y1S3d ANV

INIYHIND NIIMLIF 40YH¥3 NO d3svg SANVINNOD SHOLOW SANIS — T3AIT OAY3S
ST13A3T OML 1SIMO1 NO d3LVHLINIDONOD

SMSVL vAV HL1IM A3LN3IW3ITdINI

3ISVYIYINI STIAIT SV NOILYYIdO 40 ADNINDIYS ONISYIUOIA
ST3IAIT 1TV LV S3OV443ILNI NOWIWOD

FYNLIILIHOYY WILSAS TOMLNOD TVIIHIYVYIIH ‘AIHIAVT
W3IYSVN

NOILVOIlddVY

Martin Marietta

R. LaBaugh
15 of 19

HLMOYI 3TANVH OL NOILYIITddV ONILNGIYLSIa NI 3SID43X3
ONISSVd IOVSSIN 11 SNAILININ HLIM LNIWI¥IdX3 0STV -

AYOW3I QFYVHS VIA NOILYDINNWIWOD TVILINI

FIV443ILNI H01vy3dO

1041NOD 1080y
SNdD OM1 OLNO 300D SNILLITdS 40 SS3D0¥d NI

31DAD D3SK 0¢ NI 31N23X3 OL 379V ST3ATT WIYSYN 11V
d0O017 TOYLNOD ZH 0§ 404 IDNVWYO044¥3d 3LvNnO3IAV NVHL JHYON

213 'ONISSVd I9VSSIN 11 SNGILININ “YITTOYLNOD VING ‘FDV4HILNI FUVYMAYVH -
VAV NI NILLIdM 300D .73A3T MO, -
SYWOVYYHd 40 "STIVI WILSAS “1INYIN TVIDIdS ON -
vadv NI 340D NOILVIITddV FHILNT

S11NS3y

Martin Marietta

R. LaBaugh
16 of 19

1NdNI
NIVLY3D 404 SL1NSIY SNOINOHYI — SFUNLVI4 IOVNONVYT vaAV 40 3SN SA

SYILIWVYVYd D14123dS ANIHOVIN ‘A3A0D GYVH — AYVHEIT SNOILDONNA HAVIN -
WSINVHDIIN 1S31 ANV V1Va 1S31 ONILYO0ddNS 33N SIDVMHIVd NIVINOA DIngnd -
1354Vl NO L1nv43d 3IHL 1LON ONIDIS JNIL -
TYNOILYY NO SMSVL ALIMOIEd TvnD3 40 ONIDITS INILL -
SW3LSAS IWILNNY NI NOILVLNIWITdNIE ONINSVL NI SIONIY3I44I1Q -
vav HL1IM DILVIWOLNV LON SI ALITIGV1Y0d

(NO N¥NL YIMOd) NOILYZITVILINI WILSAS 43d0ddWI ‘STUNTIVY IYVMAYUVH -
SW37908d SNILOOHS-3T79N0¥ L 04 SISVE 3AINOdd OL d3d33N -

SNOILINI4A3A FDV44ILNI 40 SSINLDOIFHUOD -
JYYML10S ANV FYYMAYVH FHL HLO08 NI 3DN3AIINOD d1ing 0L d3A3aN -

1394Vl NO ONILS3IL
13A37 MO 404 d33N JLVNIWITI LON S300 LSOH NO 95N930 ANV 1S31 OL1 ALINIgY

d3INdVv3I1 SNOSSIT

Martin Marietta

R. LaBaugh
17 of 19

QINIVLNIVIN 38 OL SYH HDIHM WILSAS
X31dINOD ¥IHLONY SAQV ‘ALITIGYLYIOd SIONAFY — FAILONAOYYILNNOD -
NOILVLNIWITdNI WILSAS IWILNNY YIFHL
NI SONIWODLYOHS LNIAWNDYID O ‘1INA0Yd HSINONILSIA OL LdWILLY -
SIWILSAS ONILVYIAO/STINYIN AYVANYLS-NON ONIHSN -
SYOANIA TINYIN IWIL-TVIY ANY SHOANIA ¥ITIdJWOD WO
(.3719VSN-NON, 40 V3I¥V a3dNa3y) NoIS FAILISOd -

Q3YONSI 39 OL ANIL (WILSAS LIDYVL ‘YITdWOD) $DI41D3dS -
SNOILONNA SWILSAS/AWIL-TVIY SNOIYVA L¥OddNS
LONNVYD ¥0 HO9NON3 LN3I1D1443 LON SI VAV QYVIH IAVH OHM .S1¥3dX3. WOYA -
(0OIr13AIT MO
‘STIYLNT MSYL VIA SYITANVH LdNYYILNI ‘WILSAS IWIL NNY VAV QYVANVYLS '3'1)
SNOILVDITddY INIL
-1v3Y ‘a3aa3gna Y04 SIYNLVI4 IOVNONYI VAV ONISN OL FIINVLSISIY SNOANTWIHL

(penurnuod) INY¥v3I1 SNOSSIT

R. LaBaugh

Martin Marietta

18 of 19

SW3ILSAS d3AA39INT NI d3SnN 39 OL HONONI ONIINLIVIN F¥V SYITdINOD vaVv

S324N0S3H
0L SS3D2I0V IAISNTIXI — SNOILNTOS ONINSVL M0081X3L, 3SN OL 319V -

NOILVYH3dO
ASVL DITOAD ANV ¥3TANVH LdNYYILNI ONILNIWITdWI 404 AIAINO™d TDNVAIND -

NOILVIITddV JHL LNFWITdINI
OL1 SY3IINIONI HOINNM AIMOTIV SIINLVYIH YAV 40 3SN ANV NIDYVIN IDNVINYOI¥3d

43174v3 319VIIVAY -
W3ILSAS 1394V1 JHL NVHL 3718VSS3DDV JUON -
W3LSAS LSOH
3HL NO 1S31 ANV 5Ng93d TVILINI AIMOTTV WILSAS IWILNNY VAV QIVANYLS ONISN

JINVINYO443d LN3IDI44NS HLIM 437IdINOD ANV FYVMAYVH -
Vav NI A138ILNT A3LNIWNITdINT WILSAS FWIL-TVIY X3TdINOD

SNOISNTONOD/AYVININNS

Martin Marietta

R. LaBaugh
19 of 19

PANEL #4

TOOLS

D. Drew, Unisys
P. Usavage, Jr, General Electric
J. F. Buser, Software Development Concepts

